Optimal exponents for Hardy–Littlewood inequalities for m-linear operators
نویسندگان
چکیده
منابع مشابه
properties of M−hyoellipticity for pseudo differential operators
In this paper we study properties of symbols such that these belong to class of symbols sitting insideSm ρ,φ that we shall introduce as the following. So for because hypoelliptic pseudodifferential operatorsplays a key role in quantum mechanics we will investigate some properties of M−hypoelliptic pseudodifferential operators for which define base on this class of symbols. Also we consider maxi...
متن کاملOptimal Hardy–littlewood Type Inequalities for Polynomials and Multilinear Operators
Abstract. In this paper we obtain quite general and definitive forms for Hardy–Littlewood type inequalities. Moreover, when restricted to the original particular cases, our approach provides much simpler and straightforward proofs and we are able to show that in most cases the exponents involved are optimal. The technique we used is a combination of probabilistic tools and of an interpolative a...
متن کاملOptimal Hardy inequalities for general elliptic operators with improvements
Necessary and sufficient conditions on V are obtained (in terms of the solvability of a linear pde) for (3) to hold. Analogous results involving improvements are obtained for the weighted versions. We establish optimal inequalities which are similar to (1) and are valid for u ∈ H(Ω). We obtain results on improvements of this inequality which are similar to the above results on improvements. In ...
متن کاملOptimal Weyl-type inequalities for operators in Banach spaces
Let (sn) be an s-number sequence. We show for each k = 1, 2, . . . and n ≥ k + 1 the inequality
متن کاملOptimal inequalities for the power, harmonic and logarithmic means
For all $a,b>0$, the following two optimal inequalities are presented: $H^{alpha}(a,b)L^{1-alpha}(a,b)geq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain[frac{1}{4},1)$, and $ H^{alpha}(a,b)L^{1-alpha}(a,b)leq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain(0,frac{3sqrt{5}-5}{40}]$. Here, $H(a,b)$, $L(a,b)$, and $M_p(a,b)$ denote the harmonic, logarithmic, and power means of order $p$ of two positive numbers...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2017
ISSN: 0024-3795
DOI: 10.1016/j.laa.2017.06.008